ml4ai/UA-hpc-containers:numba

$ singularity pull shub://ml4ai/UA-hpc-containers:numba

Singularity Recipe

Bootstrap: docker
From: nvidia/cuda:9.1-cudnn7-runtime-ubuntu16.04


%help
This container provides access to Python3.6 via Anaconda3 with the Numba JIT compilation library. This container is CUDA enabled so Numba code can be compiled with `cuda.jit`

%labels
  Maintainer Paul Hein
  Version 1.0


%environment

  # use bash as default shell
  SHELL=/bin/bash

  # add CUDA paths
  CPATH="/usr/local/cuda/include:$CPATH"
  PATH="/usr/local/cuda/bin:$PATH"
  LD_LIBRARY_PATH="/usr/local/cuda/lib64:$LD_LIBRARY_PATH"
  CUDA_HOME="/usr/local/cuda"

  # add Anaconda path
  PATH="/usr/local/anaconda3/bin:$PATH"

  export PATH LD_LIBRARY_PATH CPATH CUDA_HOME

%post
  # load environment variables
  . /environment

  # use bash as default shell
  echo "\n #Using bash as default shell \n" >> /environment
  echo 'SHELL=/bin/bash' >> /environment

  # make environment file executable
  chmod +x /environment

  # default mount paths
  mkdir /scratch /data

  # Add CUDA paths
  echo "\n #Cuda paths \n" >> /environment
  echo 'export CPATH="/usr/local/cuda/include:$CPATH"' >> /environment
  echo 'export PATH="/usr/local/cuda/bin:$PATH"' >> /environment
  echo 'export LD_LIBRARY_PATH="/usr/local/cuda/lib64:$LD_LIBRARY_PATH"' >> /environment
  echo 'export CUDA_HOME="/usr/local/cuda"' >> /environment

  # updating and getting required packages
  apt-get update
  apt-get install -y wget git vim build-essential cmake

  # creates a build directory
  mkdir build
  cd build

  # download and install Anaconda
  CONDA_INSTALL_PATH="/usr/local/anaconda3"
  wget https://repo.continuum.io/archive/Anaconda3-5.0.1-Linux-x86_64.sh
  chmod +x Anaconda3-5.0.1-Linux-x86_64.sh
  ./Anaconda3-5.0.1-Linux-x86_64.sh -b -p $CONDA_INSTALL_PATH

  conda update conda
  conda update anaconda
  conda update --all


  # in-container bind points for shared filesystems
  mkdir -p /extra /rsgrps /xdisk /uaopt /cm/shared /cm/local

  conda install numpy tqdm
  conda install numba cudatoolkit

Collection


View on Datalad

Metrics

key value
id /containers/ml4ai-UA-hpc-containers-numba
collection name ml4ai/UA-hpc-containers
branch master
tag numba
commit 00a7124ef546d5a8603d2376c73db275d40d612d
version (container hash) 68317975de219cec1742275123acfda8
build date 2019-09-13T14:49:38.217Z
size (MB) 8908
size (bytes) 4820119583
SIF Download URL (please use pull with shub://)
Datalad URL View on Datalad
Singularity Recipe Singularity Recipe on Datalad
We cannot guarantee that all containers will still exist on GitHub.