mcw-rcc/rstudio-tensorflow:latest
$ singularity pull shub://mcw-rcc/rstudio-tensorflow:latest
Singularity Recipe
Bootstrap: shub
From: mcw-rcc/rstudio:1.1.456
%labels
Maintainer Matthew Flister
Version 09.26.18
%help
This container runs Tensorflow-GPU 1.10 for R.
%environment
# nvidia driver libs specific cuda version libs are mounted by --bind command at run
# required for GPU enabled container
SHELL=/bin/bash
CPATH="/cuda/include:$CPATH"
PATH="/cuda/bin:/nvidia:$PATH"
LD_LIBRARY_PATH="/cuda/lib64:/nvidia:$LD_LIBRARY_PATH"
CUDA_HOME="/cuda"
LC_ALL="C"
export PATH LD_LIBRARY_PATH CPATH CUDA_HOME LC_ALL
%post
# default mount points
mkdir -p /scratch/global /scratch/local /rcc/stor1/refdata /rcc/stor1/projects /rcc/stor1/depts
# NVIDIA driver mount points
mkdir /nvidia /cuda
touch /usr/bin/nvidia-smi
# Install necessary packages
apt-get update && apt-get install -y --no-install-recommends \
build-essential \
gcc-multilib \
libatlas-base-dev \
libboost-all-dev \
libhdf5-serial-dev \
libprotobuf-dev \
protobuf-compiler \
libopenblas-dev \
liblapack-dev \
gfortran \
libcurl4-openssl-dev \
python-pip \
python3-pip \
pkg-config \
python-dev \
python3-dev \
python-setuptools \
python3-setuptools \
unzip
apt-get clean
# Update pip
pip install --no-cache-dir --upgrade pip==9.0.3
pip3 install --no-cache-dir --upgrade pip==9.0.3
# Install TensorFlow-GPU
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.10.0-cp27-none-linux_x86_64.whl
pip install --no-cache-dir --ignore-installed --upgrade $TF_BINARY_URL
# Install python packages
pip install --no-binary --upgrade keras tflearn numpy nibabel h5py scikit-learn pandas scipy matplotlib ipykernel jupyter jupyterlab pydicom opencv-python tables virtualenv
# Install TensorFlow-GPU
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.10.0-cp35-cp35m-linux_x86_64.whl
pip3 install --no-cache-dir --ignore-installed --upgrade $TF_BINARY_URL
# Install python packages
pip3 install --no-binary --upgrade keras tflearn numpy nibabel h5py scikit-learn pandas scipy matplotlib ipykernel jupyter jupyterlab pydicom opencv-python tables virtualenv
# Install rstudio/tensorflow
R -e 'install.packages("devtools", repos="https://cran.rstudio.com"); options(unzip = "internal"); devtools::install_github("rstudio/tensorflow"); library(tensorflow); install_tensorflow()'
Collection
- Name: mcw-rcc/rstudio-tensorflow
- License: MIT License
View on Datalad
Metrics
key | value |
---|---|
id | /containers/mcw-rcc-rstudio-tensorflow-latest |
collection name | mcw-rcc/rstudio-tensorflow |
branch | master |
tag | latest |
commit | 8fb44fa85b54306842dec47cced31396dafc50ae |
version (container hash) | b7735eeab9c8edca6df6a3d312fca1e2 |
build date | 2018-09-28T19:48:49.787Z |
size (MB) | 7455 |
size (bytes) | 2399432735 |
SIF | Download URL (please use pull with shub://) |
Datalad URL | View on Datalad |
Singularity Recipe | Singularity Recipe on Datalad |
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.