martinobertoni/BBBpredictor:latest
$ singularity pull shub://martinobertoni/BBBpredictor:latest
Singularity Recipe
BootStrap: docker
From: centos:8
%labels
Author: Nicolas Soler
Date: 27 Nov. 2020
%environment
# PATHS
export PATH=/opt/miniconda3/bin:$PATH
. /opt/miniconda3/etc/profile.d/conda.sh
conda activate sign
%post
# bind paths
# update yum
yum update -y
# basic packages
yum install -y gcc \
gcc-c++ \
gcc-gfortran \
cmake \
make \
git \
wget \
curl \
which \
vim \
bzip2 \
bzip2-devel \
file \
libXrender \
libXext \
# conda
mkdir -p /opt/miniconda3
cd /opt/miniconda3
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh -p /opt/miniconda3 -b -f
rm Miniconda3-latest-Linux-x86_64.sh
export PATH=/opt/miniconda3/bin:$PATH
# create and activate conda enviroment
#conda init bash
conda update conda -y
conda create --no-default-packages -n sign -y python=3.7 tensorflow=1.14.0
source activate sign
conda install -y -c conda-forge rdkit
conda install -y joblib
# The signaturizer package
pip install signaturizer==1.1.7
# utility packages
conda install -y numpy
conda install -y -c anaconda scikit-learn=0.20.3 # Machine learning library
pip install wget # download library
%files
./run_BBB_predictor.py /opt
./rf_from_signZ_paper_full.joblib /opt
./NNmodels /opt
%runscript
python /opt/run_BBB_predictor.py "$@"
Collection
- Name: martinobertoni/BBBpredictor
- License: MIT License
View on Datalad
Metrics
key | value |
---|---|
id | /containers/martinobertoni-BBBpredictor-latest |
collection name | martinobertoni/BBBpredictor |
branch | main |
tag | latest |
commit | 14e641c332071f2aee45fddb09e65ab03c926264 |
version (container hash) | 9aa127d603a320cd746afad5ad8d811f |
build date | 2021-04-14T16:25:50.350Z |
size (MB) | 4505.0 |
size (bytes) | 2137473055 |
SIF | Download URL (please use pull with shub://) |
Datalad URL | View on Datalad |
Singularity Recipe | Singularity Recipe on Datalad |
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.