mark-e-deyoung/afit_mlperf_training:rnn_translator_cuda8cudnn7

$ singularity pull shub://mark-e-deyoung/afit_mlperf_training:rnn_translator_cuda8cudnn7

Singularity Recipe

Bootstrap: docker
# https://hub.docker.com/r/nvidia/cuda
From: nvidia/cuda:8.0-cudnn7-devel

%environment
	PATH="/usr/local/anaconda/bin:$PATH"
	MLPERF_DATA_DIR="/data"

%post

    # install debian packages
    apt-get update
    apt-get install -y eatmydata
    eatmydata apt-get install -y wget bzip2 \
      ca-certificates libglib2.0-0 libxext6 libsm6 libxrender1 \
      git git-annex uuid-runtime
    apt-get clean

    # install anaconda
    if [ ! -d /usr/local/anaconda ]; then
         wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \
            -O ~/anaconda.sh && \
         bash ~/anaconda.sh -b -p /usr/local/anaconda && \
         rm ~/anaconda.sh
    fi
    # set anaconda path
    export PATH="/usr/local/anaconda/bin:$PATH"

    # install required packages
    conda install pip
    conda install pytorch torchvision cudatoolkit=8.0 -c pytorch
    pip install sacrebleu numpy mlperf-compliance
    conda clean --tarballs

    # make /data and /code for mounts to external directories
    if [ ! -d /data ]; then mkdir /data; fi
    if [ ! -d /code ]; then mkdir /code; fi

% runscript
	echo "Singularity: PyTorch (CUDA 8.0 cuDNN 7"
	exec /bin/bash

Collection


View on Datalad

Metrics

key value
id /containers/mark-e-deyoung-afit_mlperf_training-rnn_translator_cuda8cudnn7
collection name mark-e-deyoung/afit_mlperf_training
branch master
tag rnn_translator_cuda8cudnn7
commit 93714630801207478eacd3210cff7f77b7a6c84a
version (container hash) c3188fa2af0cbb79f7aae6712038a427
build date 2020-05-06T17:44:25.538Z
size (MB) 4293
size (bytes) 2299346975
SIF Download URL (please use pull with shub://)
Datalad URL View on Datalad
Singularity Recipe Singularity Recipe on Datalad
We cannot guarantee that all containers will still exist on GitHub.