karltayeb/gp_fine_mapping:gpu

$ singularity pull shub://karltayeb/gp_fine_mapping:gpu

Singularity Recipe

Bootstrap: docker
From: tensorflow/tensorflow:1.13.1-gpu-py3-jupyter

%environment
  # use bash as default shell
  SHELL=/bin/bash
  export SHELL

%setup
  # runs on host - the path to the image is $SINGULARITY_ROOTFS

%post
  # post-setup script

  # load environment variables
  . /environment

  # use bash as default shell
  echo 'SHELL=/bin/bash' >> /environment

  # make environment file executable
  chmod +x /environment

  # default mount paths
  mkdir /scratch /data 

  # additional packages
  apt-get update
  apt-get install -y python-tk
  apt-get install -y python3-tk

  apt-get install -y libsm6 libxext6
  pip install selenium
  pip install moviepy
  pip install lmdb
  pip install opencv-contrib-python
  pip install cryptography
  
  pip install gpflow
  pip install sklearn
  pip install tensorflow-probability
  pip install matplotlib
  pip install seaborn
  
%runscript
  # executes with the singularity run command
  # delete this section to use existing docker ENTRYPOINT command

%test
  # test that script is a success

Collection


View on Datalad

Metrics

key value
id /containers/karltayeb-gp_fine_mapping-gpu
collection name karltayeb/gp_fine_mapping
branch master
tag gpu
commit 5252e00f94c909e41767c21f69da4e4bb208c343
version (container hash) ddc5fd6dbdca1f22739b5e4c0859791a
build date 2019-06-24T14:48:05.229Z
size (MB) 3903
size (bytes) 1962504223
SIF Download URL (please use pull with shub://)
Datalad URL View on Datalad
Singularity Recipe Singularity Recipe on Datalad
We cannot guarantee that all containers will still exist on GitHub.