joaocaldeira/singularity_imgs:py3_tf112
$ singularity pull shub://joaocaldeira/singularity_imgs:py3_tf112
Singularity Recipe
Bootstrap: docker
From: nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04
%help
To start your container simply try
singularity exec THIS_CONTAINER.simg bash
To use GPUs, try
singularity exec --nv THIS_CONTAINER.simg bash
Container based on recipe by drinkingkazu
%labels
Maintainer caldeira
Version ubuntu16.04-py3-tf112-gpu
#------------
# Global installation
#------------
%environment
export XDG_RUNTIME_DIR=/tmp/$USER
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:${LD_LIBRARY_PATH}
export CUDA_DEVICE_ORDER=PCI_BUS_ID
%post
# add wilson cluster mount points
mkdir /scratch /data /lfstev
# apt-get
apt-get -y update
apt-get -y install dpkg-dev g++ gcc binutils libqt4-dev python3-dev python3-tk python3-pip
# pip
python3 -m pip install --upgrade setuptools pip
python3 -m pip install tensorflow-gpu==1.12.0
python3 -m pip install h5py
Collection
- Name: joaocaldeira/singularity_imgs
- License: None
View on Datalad
Metrics
key | value |
---|---|
id | /containers/joaocaldeira-singularity_imgs-py3_tf112 |
collection name | joaocaldeira/singularity_imgs |
branch | master |
tag | py3_tf112 |
commit | e896f5a0ea25e27b56820cea602896190420b42a |
version (container hash) | 9342e07443ad4f4483f06ca6918dfbf1 |
build date | 2019-06-18T22:10:58.374Z |
size (MB) | 4423 |
size (bytes) | 2372816927 |
SIF | Download URL (please use pull with shub://) |
Datalad URL | View on Datalad |
Singularity Recipe | Singularity Recipe on Datalad |
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.