gnperdue/singularity_imgs:py3_tf2gnt

$ singularity pull shub://gnperdue/singularity_imgs:py3_tf2gnt

Singularity Recipe

Bootstrap: docker
From: nvidia/cuda:10.0-devel-ubuntu16.04

%help
To start your container simply try
singularity exec THIS_CONTAINER.simg bash

To use GPUs, try
singularity exec --nv THIS_CONTAINER.simg bash

Container based on recipe by drinkingkazu

%labels
Maintainer gnperdue
Version ubuntu16.04-py3-tf2-alpha-gpu

#------------
# Global installation
#------------
%environment
    export XDG_RUNTIME_DIR=/tmp/$USER
    export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:${LD_LIBRARY_PATH}
    export CUDA_DEVICE_ORDER=PCI_BUS_ID

%post
    # add wilson cluster mount points
    mkdir /scratch /data /lfstev

    # apt-get
    apt-get -y update
    apt-get -y install dpkg-dev g++ gcc binutils libqt4-dev python3-dev python3-tk python3-pip

    # pip
    python3 -m pip install --upgrade setuptools pip
    python3 -m pip install --no-cache-dir --upgrade tf-nightly-gpu-2.0-preview tf-agents-nightly tfp-nightly tensorflow-datasets
    python3 -m pip install --no-cache-dir matplotlib seaborn scikit-image
    python3 -m pip install --no-cache-dir 'gym[atari,box2d,classic_control]'

Collection


View on Datalad

Metrics

key value
id /containers/gnperdue-singularity_imgs-py3_tf2gnt
collection name gnperdue/singularity_imgs
branch master
tag py3_tf2gnt
commit 7af2da88c575ea35408c3bb04b585c7b3937e583
version (container hash) 3058b97fa940a932db3a66c24bf0e4dd
build date 2019-05-23T15:31:33.040Z
size (MB) 4240
size (bytes) 1945292831
SIF Download URL (please use pull with shub://)
Datalad URL View on Datalad
Singularity Recipe Singularity Recipe on Datalad
We cannot guarantee that all containers will still exist on GitHub.