fcatus/hcc:py3-pytorch
$ singularity pull shub://fcatus/hcc:py3-pytorch
Singularity Recipe
Bootstrap: docker
From: nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04
%environment
# use bash as default shell
SHELL=/bin/bash
# add CUDA paths
CPATH="/usr/local/cuda/include:$CPATH"
PATH="/usr/local/cuda/bin:$PATH"
LD_LIBRARY_PATH="/usr/local/cuda/lib64:$LD_LIBRARY_PATH"
CUDA_HOME="/usr/local/cuda"
# add Anaconda path
PATH="/usr/local/anaconda3/bin:$PATH"
export PATH LD_LIBRARY_PATH CPATH CUDA_HOME
%setup
# runs on host
# the path to the image is $SINGULARITY_ROOTFS
%post
# post-setup script
# load environment variables
. /environment
# use bash as default shell
echo "\n #Using bash as default shell \n" >> /environment
echo 'SHELL=/bin/bash' >> /environment
# make environment file executable
chmod +x /environment
# default mount paths
mkdir /scratch /data
#Add CUDA paths
echo "\n #Cuda paths \n" >> /environment
echo 'export CPATH="/usr/local/cuda/include:$CPATH"' >> /environment
echo 'export PATH="/usr/local/cuda/bin:$PATH"' >> /environment
echo 'export LD_LIBRARY_PATH="/usr/local/cuda/lib64:$LD_LIBRARY_PATH"' >> /environment
echo 'export CUDA_HOME="/usr/local/cuda"' >> /environment
# updating and getting required packages
apt-get update
apt-get install -y wget git vim build-essential cmake
apt-get install -y ffmpeg
apt-get install -y sudo
apt-get install -y zsh
# creates a build directory
mkdir build
cd build
# download and install Anaconda
CONDA_INSTALL_PATH="/usr/local/anaconda3"
wget https://repo.anaconda.com/archive/Anaconda3-2019.07-Linux-x86_64.sh
chmod +x Anaconda3-2019.07-Linux-x86_64.sh
./Anaconda3-2019.07-Linux-x86_64.sh -b -p $CONDA_INSTALL_PATH
#install pytorch
/usr/local/anaconda3/bin/conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
#install nice stuff
/usr/local/anaconda3/bin/conda install -y numba bcolz networkx dask seaborn pandas numexpr unidecode
#install boolean network stuff
/usr/local/anaconda3/bin/pip install -U dynpy cana
#install other pip stuff
/usr/local/anaconda3/bin/pip install fastai matplotlib graphillion
#install hyperlearn
#git clone https://github.com/danielhanchen/hyperlearn.git
#cd hyperlearn
#/usr/local/anaconda3/bin/python setup.py
#install graphblas
#git clone --recursive https://github.com/gunrock/graphblast.git
#cd graphblast
#mkdir build
#cd build
#cmake ..
#make -j$(nproc)
#conda cleanup
/usr/local/anaconda3/bin/conda clean -ya
#apt cleanup
#apt-get autoremove -y
#%runscript
# executes with the singularity run command
# delete this section to use existing docker ENTRYPOINT command
%test
# test that script is a success
Collection
- Name: fcatus/hcc
- License: None
View on Datalad
Metrics
key | value |
---|---|
id | /containers/fcatus-hcc-py3-pytorch |
collection name | fcatus/hcc |
branch | master |
tag | py3-pytorch |
commit | fff1c40d99dcdcdb3b03d249eb95c81bb3f69337 |
version (container hash) | bf2802e1224bc9ab1fd5c067ac10ca622a128655a4943f612b88fb96da458e10 |
build date | 2020-01-31T22:50:15.803Z |
size (MB) | 4045.62109375 |
size (bytes) | 4242141184 |
SIF | Download URL (please use pull with shub://) |
Datalad URL | View on Datalad |
Singularity Recipe | Singularity Recipe on Datalad |
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.