eugtsa/tf_pytorch_singularity:latest

$ singularity pull shub://eugtsa/tf_pytorch_singularity:latest

Singularity Recipe

Bootstrap: docker
From: neurodebian:latest

%help

    Container with Anaconda 3 (Conda 2019.10), tensorflow-gpu-2.0 and notebooks environment from neurodebian.
    This installation is based on Python 3.7

%files
  ./requirements.txt /requirements.txt

%post
  
  
  apt-get update
  DEBIAN_FRONTEND=noninteractive apt-get -yq install \
    build-essential \
    wget \
    unzip \
    git \
    libxml2-dev \
    libssl-dev \
    libcurl4-openssl-dev \
    libgit2-dev \
    libssh2-1-dev \
    python3-setuptools

  
  wget -c https://repo.anaconda.com/archive/Anaconda3-2019.10-Linux-x86_64.sh
    /bin/bash Anaconda3-2019.10-Linux-x86_64.sh -bfp /usr/local

  #Conda configuration of channels from .condarc file

  conda config --add channels defaults
  conda config --add channels conda-forge

  #Install environment
  conda install --file requirements.txt

Collection


View on Datalad

Metrics

key value
id /containers/eugtsa-tf_pytorch_singularity-latest
collection name eugtsa/tf_pytorch_singularity
branch main
tag latest
commit a723eb78b9f14bb9562bb5cd0c4fc8104c52f20e
version (container hash) 31580cb0fc73f1638d004084a83bf8f35613cd6560ec4286aa6a2276592eb8a7
build date 2021-04-19T06:51:22.846Z
size (MB) 3961.41796875
size (bytes) 4153847808
SIF Download URL (please use pull with shub://)
Datalad URL View on Datalad
Singularity Recipe Singularity Recipe on Datalad
We cannot guarantee that all containers will still exist on GitHub.