dmorrill10/research2018:gpu

$ singularity pull shub://dmorrill10/research2018:gpu

Singularity Recipe

Bootstrap: docker
From: tensorflow/tensorflow:1.12.0-rc2-gpu-py3

%help

To install python libraries after this image is built, create a virtual environment that uses the system packages with `virtualenv --system-site-packages venv && source venv/bin/activate`, then use `pip` as usual.


%environment
  # use bash as default shell
  SHELL=/bin/bash
  export SHELL

%setup
  # runs on host - the path to the image is $SINGULARITY_ROOTFS

%post
  # post-setup script

  # load environment variables
  . /environment

  # use bash as default shell
  echo 'SHELL=/bin/bash' >> /environment
  chmod +x /environment

  # default mount paths
  mkdir -p /scratch /data /usr/bin

  apt-get update
  apt-get install ca-certificates curl
  apt-get clean

  curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
  python get-pip.py
  pip install numpy virtualenv

%runscript
  # executes with the singularity run command
  # delete this section to use existing docker ENTRYPOINT command

%test
  # test that script is a success

Collection


View on Datalad

Metrics

key value
id /containers/dmorrill10-research2018-gpu
collection name dmorrill10/research2018
branch master
tag gpu
commit 26d55be36b9ee1ca64fd5674a380214c15e971d3
version (container hash) fb5f82c0a49ccc7594b5ab81cfc254fe
build date 2018-11-01T21:55:11.790Z
size (MB) 3266
size (bytes) 1616293919
SIF Download URL (please use pull with shub://)
Datalad URL View on Datalad
Singularity Recipe Singularity Recipe on Datalad
We cannot guarantee that all containers will still exist on GitHub.