dmorrill10/py3-tf-gpu-ale:latest
$ singularity pull shub://dmorrill10/py3-tf-gpu-ale:latest
Singularity Recipe
Bootstrap: docker
From: tensorflow/tensorflow:1.5.0-gpu-py3
%help
To install python libraries after this image is built, create a virtual environment that uses the system packages with `virtualenv --system-site-packages venv && source venv/bin/activate`, then use `pip` as usual.
%environment
# use bash as default shell
SHELL=/bin/bash
export SHELL
%setup
# runs on host - the path to the image is $SINGULARITY_ROOTFS
%post
# post-setup script
# load environment variables
. /environment
# use bash as default shell
echo 'SHELL=/bin/bash' >> /environment
chmod +x /environment
# default mount paths
mkdir -p /scratch /data /usr/bin
apt-get update
apt-get install -y cmake libcupti-dev libyaml-dev wget unzip locales
apt-get clean
locale-gen en_US.UTF-8
pip3 install --upgrade pip
pip3 install numpy tqdm virtualenv
wget https://github.com/mgbellemare/Arcade-Learning-Environment/archive/v0.6.0.zip
unzip v0.6.0.zip
cd Arcade-Learning-Environment-0.6.0
rm -rf build
mkdir build
cd build
cmake -DUSE_SDL=OFF -DUSE_RLGLUE=OFF -DBUILD_EXAMPLES=OFF ..
make -j 4
cd ../
pip3 install .
%runscript
# executes with the singularity run command
# delete this section to use existing docker ENTRYPOINT command
%test
# test that script is a success
Collection
- Name: dmorrill10/py3-tf-gpu-ale
- License: MIT License
View on Datalad
Metrics
key | value |
---|---|
id | /containers/dmorrill10-py3-tf-gpu-ale-latest |
collection name | dmorrill10/py3-tf-gpu-ale |
branch | master |
tag | latest |
commit | c8e1090ea47759c8668ad9e6072729dcde12f9b6 |
version (container hash) | 157c0032987bee79bc4bb53a5aadc761 |
build date | 2018-02-22T21:43:25.911Z |
size (MB) | 2949 |
size (bytes) | 1226223647 |
SIF | Download URL (please use pull with shub://) |
Datalad URL | View on Datalad |
Singularity Recipe | Singularity Recipe on Datalad |
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.