arcsUVA/tensorflow:1.12.0-py27
$ singularity pull shub://arcsUVA/tensorflow:1.12.0-py27
Singularity Recipe
BootStrap: docker
From: nvidia/cuda:9.0-devel-ubuntu16.04
%post
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# this will install all necessary packages and prepare the container
CUDA_MAJVERSION=9 # as of 2019-01-16 the tensorflow 1.12 wheel is built with cuda 9.0
CUDA_MINVERSION=0
CUDA_VERSION=${CUDA_MAJVERSION}.${CUDA_MINVERSION}
CUDNN_VERSION=7.4.1.5
apt-get -y update --fix-missing
# install cuDNN and accessories
apt-get install -y --no-install-recommends \
build-essential \
cuda-command-line-tools-${CUDA_MAJVERSION}-${CUDA_MINVERSION} \
cuda-cublas-${CUDA_MAJVERSION}-${CUDA_MINVERSION} \
cuda-cufft-${CUDA_MAJVERSION}-${CUDA_MINVERSION} \
cuda-curand-${CUDA_MAJVERSION}-${CUDA_MINVERSION} \
cuda-cusolver-${CUDA_MAJVERSION}-${CUDA_MINVERSION} \
cuda-cusparse-${CUDA_MAJVERSION}-${CUDA_MINVERSION} \
libcudnn7=${CUDNN_VERSION}-1+cuda${CUDA_VERSION} \
libcudnn7-dev=${CUDNN_VERSION}-1+cuda${CUDA_VERSION} \
libfreetype6-dev \
libhdf5-serial-dev \
libpng12-dev \
libzmq3-dev \
pkg-config \
software-properties-common \
unzip
# install other tools and dependencies
apt-get -y install --allow-downgrades --no-install-recommends \
dbus \
wget \
git \
mercurial \
subversion \
vim \
nano \
cmake \
bzip2 \
ca-certificates \
libglib2.0-0 \
libxext6 \
libsm6 \
libxrender1 \
libboost-all-dev
# install TensorRT
apt-get install nvinfer-runtime-trt-repo-ubuntu1604-5.0.2-ga-cuda${CUDA_VERSION}
apt-get update
apt-get install -y --no-install-recommends libnvinfer5=5.0.2-1+cuda${CUDA_VERSION}
apt-get clean
rm -rf /var/lib/apt/lists/*
# locale-gen en_US
# locale-gen en_US.UTF-8
# locale update
# system-machine-id-setup
rm /etc/machine-id
dbus-uuidgen --ensure=/etc/machine-id
export CUDA_HOME="/usr/local/cuda"
export CPATH="$CUDA_HOME/include:$CPATH"
export LD_LIBRARY_PATH="$CUDA_HOME/lib64:$CUDA_HOME/extras/CUPTI/lib64:$LD_LIBRARY_PATH"
export PATH="$CUDA_HOME/bin:$PATH"
export PATH="/opt/conda/bin:$PATH"
# required for LightGBM
mkdir -p /etc/OpenCL/vendors && \
echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icd
export BOOST_ROOT=/usr/local/boost
wget --quiet https://repo.continuum.io/archive/Anaconda2-5.2.0-Linux-x86_64.sh -O ~/anaconda.sh
/bin/bash ~/anaconda.sh -b -p /opt/conda
rm ~/anaconda.sh
conda update \
conda \
pandas
conda install \
numpy=1.15
# pyqt=5.6.0 \
# spyder=3.3.2 \
# qtconsole=4.3.1 \
# qtpy=1.5.2
pip install --upgrade \
pip \
setuptools \
argparse \
msgpack
# install tensorflow with gpu support
pip install tensorflow-gpu==1.12
# install Keras Visualization Toolkit
pip install keras-vis # requires numpy 1.15
# install tflearn
pip install tflearn
# install pytorch
conda install pytorch=1.0 cudatoolkit=${CUDA_MAJVERSION}.${CUDA_MINVERSION} torchvision -c pytorch
# install xgboost
cd /opt
# wget https://github.com/dmlc/xgboost/archive/v0.80.tar.gz
# tar xzf v0.80.tar.gz
# rm v0.80.tar.gz
# mv xgboost-0.80 xgboost
git clone --recursive https://github.com/dmlc/xgboost
cd xgboost
mkdir build
cd build
cmake .. -DUSE_CUDA=ON
make -j4
cd ../python-package
python setup.py install
# install lightgbm
cd /opt
git clone --recursive https://github.com/Microsoft/LightGBM
cd LightGBM
mkdir build
cd build
cmake -DUSE_GPU=1 -DOpenCL_LIBRARY=$CUDA_HOME/lib64/libOpenCL.so -DOpenCL_INCLUDE_DIR=$CUDA_HOME/include/ ..
make -j4
cd ../python-package
python setup.py install --gpu --precompile
# install OpenCV
pip install opencv-python
conda clean --index-cache --tarballs --packages --yes
%runscript
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# this text code will run whenever the container
# is called as an executable or with `singularity run`
exec python $@
%help
This container is backed by Anaconda version 5.2.0 and provides the Python 3.6 bindings for:
* Tensorflow 1.12.0 with Keras implementation
* Keras Visualization Toolkit
* PyTorch 1.0
* XGBoost
* LightGBM
* OpenCV
* CUDA 9.0
* CuDNN 7.4.1.5
%environment
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# This sets global environment variables for anything run within the container
export CUDA_HOME="/usr/local/cuda"
export CPATH="$CUDA_HOME/include:$CPATH"
export LD_LIBRARY_PATH="$CUDA_HOME/lib64:$CUDA_HOME/extras/CUPTI/lib64:$LD_LIBRARY_PATH"
export PATH="$CUDA_HOME/bin:$PATH"
export PATH="/opt/conda/bin:$PATH"
unset CONDA_DEFAULT_ENV
export ANACONDA_HOME=/opt/conda
XGBOOSTROOT=/opt/xgboost
export CPATH="$XGBOOSTROOT/include:$CPATH"
export LD_LIBRARY_PATH="$XGBOOSTROOT/lib:$LD_LIBRARY_PATH"
export PATH="$XGBOOSTROOT:$PATH"
export PYTHONPATH=$XGBOOSTROOT/python-package:$PYTHONPATH
LIGHTGBMROOT=/opt/LightGBM
export CPATH="$LIGHTGBMROOT/include:$CPATH"
export LD_LIBRARY_PATH="$LIGHTGBMROOT:$LD_LIBRARY_PATH"
export PATH="$LIGHTGBMROOT:$PATH"
export PYTHONPATH=$LIGHTGBMROOT/python-package:$PYTHONPATH
Collection
- Name: arcsUVA/tensorflow
- License: None
View on Datalad
Metrics
key | value |
---|---|
id | /containers/arcsUVA-tensorflow-1.12.0-py27 |
collection name | arcsUVA/tensorflow |
branch | master |
tag | 1.12.0-py27 |
commit | bfae53a6ee5cffe7b9f57501864e7e56d740e904 |
version (container hash) | 58c89cc803a4b24b7ed4606393261cfa |
build date | 2019-04-12T04:45:45.539Z |
size (MB) | 9139 |
size (bytes) | 4164362271 |
SIF | Download URL (please use pull with shub://) |
Datalad URL | View on Datalad |
Singularity Recipe | Singularity Recipe on Datalad |
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.