alex-chunhui-yang/container:conda_torch

$ singularity pull shub://alex-chunhui-yang/container:conda_torch

Singularity Recipe

Bootstrap: docker
From: ubuntu:18.04

%environment
# use bash as default shell
SHELL=/bin/bash
export SHELL
export HDF5_USE_FILE_LOCKING='FALSE'
export PATH=/usr/local/cuda/bin:$PATH
export CPATH=/usr/local/cuda/include:$CPATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export PATH=$PATH:/opt/anaconda3/bin

%setup
# runs on host
# the path to the image is $SINGULARITY_ROOTFS

%post
# post-setup script

# load environment variables
. /environment

# use bash as default shell
echo 'SHELL=/bin/bash' >> /environment

# make environment file executable
chmod +x /environment

# default mount paths
mkdir /scratch

# fix this issue: https://github.com/singularityware/singularity/issues/1182#issuecomment-381796545
touch /usr/bin/nvidia-smi

apt-get update && apt-get -y install locales
locale-gen en_US.UTF-8
apt-get -y --force-yes install vim wget bzip2

# install anaconda
# PREFIX=/opt/anaconda3
wget https://repo.anaconda.com/archive/Anaconda3-5.2.0-Linux-x86_64.sh
bash ./Anaconda3-5.2.0-Linux-x86_64.sh -b -p /opt/anaconda3
export PATH=$PATH:/opt/anaconda3/bin

# setup tensorflow environment
# /opt/anaconda3/envs/tensorflow-env
conda create --name torch-env -y
chmod +x /opt/anaconda3/bin/activate
/opt/anaconda3/bin/activate torch-env
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch

%runscript
# executes with the singularity run command
# delete this section to use existing docker ENTRYPOINT command

%test
# test that script is a success

Collection


View on Datalad

Metrics

key value
id /containers/alex-chunhui-yang-container-conda_torch
collection name alex-chunhui-yang/container
branch master
tag conda_torch
commit 806d7be8db5212f733cc563127b710ccc27fe308
version (container hash) cde5a32ffb8804099c118584a5d559909ea78cc9fa628a3caa52d5b807874e90
build date 2020-09-25T03:44:49.692Z
size (MB) 3921.28515625
size (bytes) 4111765504
SIF Download URL (please use pull with shub://)
Datalad URL View on Datalad
Singularity Recipe Singularity Recipe on Datalad
We cannot guarantee that all containers will still exist on GitHub.