adam2392/deeplearning_hubs:tvb
$ singularity pull shub://adam2392/deeplearning_hubs:tvb
Singularity Recipe
Bootstrap: docker
From: continuumio/miniconda3
%environment
# use bash as default shell
SHELL=/bin/bash
export SHELL
# expose conda
PATH="/opt/conda/bin:$PATH"
export PATH
#PATH=/opt/conda/envs/pytorch-py3.6/bin:$PATH
%setup
# runs on host - the path to the image is $SINGULARITY_ROOTFS
%post
# load environment variables
. /environment
# make environment file executable
chmod +x /environment
# default mount paths, files
mkdir /scratch /data /work-zfs
# post-setup script
# apk update && apk add bash
# apt-get update
# apt-get install -y wget
# apt-get install -y bzip2
# apt-get install -y vim
conda update -y conda
# user requests (contact marcc-help@marcc.jhu.edu)
# conda create -n tvb python=2 && source activate tvb
conda install nomkl numpy numexpr numba matplotlib scipy cython scikit-learn pandas
conda install -c anaconda numpy pytest flake8 natsort
conda install -c conda-forge tvb-gdist psutil networkx nibabel nilearn mne seaborn SALib mako
%runscript
# executes with the singularity run command
# delete this section to use existing docker ENTRYPOINT command
conda env list
source activate tvb
%test
# test that script is a success
Collection
- Name: adam2392/deeplearning_hubs
- License: Other
View on Datalad
Metrics
key | value |
---|---|
id | /containers/adam2392-deeplearning_hubs-tvb |
collection name | adam2392/deeplearning_hubs |
branch | tvb |
tag | tvb |
commit | a1f1e9664e45f967cfa85dd2c27a31296933accd |
version (container hash) | 0f65d0181b518057ecd44c641d0c97ef |
build date | 2019-08-14T22:45:41.212Z |
size (MB) | 2939 |
size (bytes) | 1166831647 |
SIF | Download URL (please use pull with shub://) |
Datalad URL | View on Datalad |
Singularity Recipe | Singularity Recipe on Datalad |
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.