TurbulentDynamics/TD_env_setup_dev_info:latest

$ singularity pull shub://TurbulentDynamics/TD_env_setup_dev_info:latest

Singularity Recipe

Bootstrap: docker
From: docker://nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04

%labels
  MAINTAINER Turbulent Dynamics

%environment
  # build time environment
  SHELL=/bin/bash
  export SHELL
  
%setup
  # runs on host - the path to the image is $SINGULARITY_ROOTFS

%post
  # post-setup script

  # additional packages
  apt update
  apt install -y curl wget vim clang libicu-dev 

  # Install Apple Swift
  wget -nc https://swift.org/builds/swift-4.2.3-release/ubuntu1604/swift-4.2.3-RELEASE/swift-4.2.3-RELEASE-ubuntu16.04.tar.gz
  tar xzf swift-4.2.3-RELEASE-ubuntu16.04.tar.gz -C /opt
  echo 'export PATH=/opt/swift-4.2.3-RELEASE-ubuntu16.04/usr/bin:${PATH}' >>$SINGULARITY_ENVIRONMENT

  # Install any needed python packages
  apt install -y python3 python3-dev
  curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
  python3 get-pip.py
  pip3 install tensorflow-gpu

  pip3 install --trusted-host pypi.python.org matplotlib pandas dask pillow keras
  pip3 install https://download.pytorch.org/whl/cu100/torch-1.0.1.post2-cp35-cp35m-linux_x86_64.whl
  pip3 install torchvision


%runscript
  # executes with the singularity run command
  # delete this section to use existing docker ENTRYPOINT command
  alias ll='ls -l'
  alias python=python3

%test
  # test that script is a success
  #python3 -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"

Collection


View on Datalad

Metrics

key value
id /containers/TurbulentDynamics-TD_env_setup_dev_info-latest
collection name TurbulentDynamics/TD_env_setup_dev_info
branch master
tag latest
commit 6571ae8eb5ea941a66ccd7470d33bb230a2336aa
version (container hash) b6cf59e1f026c8decb23330b25b50c9a
build date 2019-06-19T16:10:35.575Z
size (MB) 8939
size (bytes) 5311078431
SIF Download URL (please use pull with shub://)
Datalad URL View on Datalad
Singularity Recipe Singularity Recipe on Datalad
We cannot guarantee that all containers will still exist on GitHub.