Sylvia-Liang/tf120:latest
$ singularity pull shub://Sylvia-Liang/tf120:latest
Singularity Recipe
BootStrap: docker
From: nvidia/cuda:9.0-devel-ubuntu16.04
%post
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# this will install all necessary packages and prepare the container
CUDNN_VERSION=7.0.5.15
apt-get -y update --fix-missing
# install cuDNN version 7.0.5 required for keras
apt-get install -y --no-install-recommends \
libcudnn7=$CUDNN_VERSION-1+cuda9.0 \
libcudnn7-dev=$CUDNN_VERSION-1+cuda9.0 && \
rm -rf /var/lib/apt/lists/*
apt-get -y update
# install other dependencies
apt-get -y install --allow-downgrades --no-install-recommends \
build-essential \
dbus \
wget \
git \
mercurial \
subversion \
vim \
nano \
cmake \
bzip2 \
ca-certificates \
libglib2.0-0 \
libxext6 \
libsm6 \
libxrender1 \
libboost-all-dev
# locale-gen en_US
# locale-gen en_US.UTF-8
# locale update
# system-machine-id-setup
rm /etc/machine-id
dbus-uuidgen --ensure=/etc/machine-id
export CUDA_HOME="/usr/local/cuda"
export CPATH="$CUDA_HOME/include:$CPATH"
export LD_LIBRARY_PATH="$CUDA_HOME/lib64:$LD_LIBRARY_PATH"
export PATH="$CUDA_HOME/bin:$PATH"
export PATH="/opt/conda/bin:$PATH"
# required for LightGBM
mkdir -p /etc/OpenCL/vendors && \
echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icd
export BOOST_ROOT=/usr/local/boost
wget --quiet https://repo.continuum.io/archive/Anaconda2-5.2.0-Linux-x86_64.sh -O ~/anaconda.sh
/bin/bash ~/anaconda.sh -b -p /opt/conda
rm ~/anaconda.sh
conda update conda
conda install \
pyqt=5.6.0 \
spyder==3.2.6 \
qtconsole==4.3.1 \
qtpy==1.3.1
pip install --upgrade pip
# install tensorflow with gpu support
pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0-cp27-none-linux_x86_64.whl
# install tflearn
pip install tflearn
# install keras
pip install keras==2.2.4
# install pytorch
conda install pytorch=0.4.0 torchvision -c pytorch
# install xgboost
cd /opt
git clone --recursive https://github.com/dmlc/xgboost
cd xgboost
mkdir build
cd build
cmake .. -DUSE_CUDA=ON
make -j4
cd ../python-package
python setup.py install
# install lightgbm
cd /opt
git clone --recursive https://github.com/Microsoft/LightGBM
cd LightGBM
mkdir build
cd build
cmake -DUSE_GPU=1 -DOpenCL_LIBRARY=$CUDA_HOME/lib64/libOpenCL.so -DOpenCL_INCLUDE_DIR=$CUDA_HOME/include/ ..
make -j4
cd ../python-package
python setup.py install --gpu --precompile
# install OpenCV
pip install opencv-python
conda clean --index-cache --tarballs --packages --yes
%runscript
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# this text code will run whenever the container
# is called as an executable or with `singularity run`
exec python $@
%help
This container is backed by Anaconda version 5.2.0 and provides the Python 2.7 bindings for:
* Tensorflow 1.6.0
* Keras 2.2.4
* PyTorch 0.4.0
* XGBoost
* LightGBM
* OpenCV
* CUDA 9.0
* CuDNN 7.0.5.15
%environment
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# This sets global environment variables for anything run within the container
export CUDA_HOME="/usr/local/cuda"
export CPATH="$CUDA_HOME/include:$CPATH"
export LD_LIBRARY_PATH="$CUDA_HOME/lib64:$LD_LIBRARY_PATH"
export PATH="$CUDA_HOME/bin:$PATH"
export PATH="/opt/conda/bin:$PATH"
unset CONDA_DEFAULT_ENV
export ANACONDA_HOME=/opt/conda
XGBOOSTROOT=/opt/xgboost
export CPATH="$XGBOOSTROOT/include:$CPATH"
export LD_LIBRARY_PATH="$XGBOOSTROOT/lib:$LD_LIBRARY_PATH"
export PATH="$XGBOOSTROOT:$PATH"
export PYTHONPATH=$XGBOOSTROOT/python-package:$PYTHONPATH
LIGHTGBMROOT=/opt/LightGBM
export CPATH="$LIGHTGBMROOT/include:$CPATH"
export LD_LIBRARY_PATH="$LIGHTGBMROOT:$LD_LIBRARY_PATH"
export PATH="$LIGHTGBMROOT:$PATH"
export PYTHONPATH=$LIGHTGBMROOT/python-package:$PYTHONPATH
Collection
- Name: Sylvia-Liang/tf120
- License: None
View on Datalad
Metrics
key | value |
---|---|
id | /containers/Sylvia-Liang-tf120-latest |
collection name | Sylvia-Liang/tf120 |
branch | master |
tag | latest |
commit | 2a5a7c6000fb24d837d11a44d040102b4415bae7 |
version (container hash) | a9169ea7c48e01a68a93ef0d1d2b22d7 |
build date | 2019-04-04T22:58:12.109Z |
size (MB) | 8105 |
size (bytes) | 3666595871 |
SIF | Download URL (please use pull with shub://) |
Datalad URL | View on Datalad |
Singularity Recipe | Singularity Recipe on Datalad |
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.