ArbinTimilsina/Base-Singularity:deeplearningwithprotodune

$ singularity pull shub://ArbinTimilsina/Base-Singularity:deeplearningwithprotodune

Singularity Recipe

Bootstrap: docker
From: tensorflow/tensorflow:1.9.0-devel-gpu-py3

%labels
Maintainer Arbin Timilsina
Version DeepLearningWithProtoDUNE

%help
A portable Ubuntu 16.04 environment with pre-built ML/DLframeworks including scikit-learn and keras.
Also includes the following:
Development kit : dpkg-dev g++ gcc binutils libqt4-dev python3-dev python3-tk python3-pip
Utility kit     : git wget emacs vim
Basic python    : wheel zmq six pygments pyyaml cython gputil psutil humanize h5py tqdm jupyter pydot graphviz
ML packages     : numpy matplotlib pandas scikit-image scikit-learn Pillow opencv-python
DL packages     : tensorflow keras

To start the container simply do
singularity exec THIS_CONTAINER.simg bash

To use GPUs, do
singularity exec --nv THIS_CONTAINER.simg bash

%environment
    # for system
    export XDG_RUNTIME_DIR=/tmp/$USER
			    
%post
    # apt-get
    apt-get -y update
    apt-get -y install dpkg-dev g++ gcc binutils libqt4-dev python3-dev python3-tk python3-pip git wget emacs vim
    apt-get -y install graphviz

# pip basics- pip3 breaks the build- https://github.com/pypa/pip/issues/5599 so using python -m pip instead
    python -m pip --no-cache-dir install --upgrade pip
    python -m pip --no-cache-dir install --upgrade setuptools
    python -m pip --no-cache-dir install numpy wheel zmq six pygments pyyaml cython gputil psutil humanize h5py tqdm
    python -m pip --no-cache-dir install matplotlib pandas scikit-image scikit-learn Pillow opencv-python
    python -m pip --no-cache-dir install jupyter notebook
    python -m pip --no-cache-dir install pydot
    
# keras
    python -m pip --no-cache-dir install keras

Collection


View on Datalad

Metrics

key value
id /containers/ArbinTimilsina-Base-Singularity-deeplearningwithprotodune
collection name ArbinTimilsina/Base-Singularity
branch master
tag deeplearningwithprotodune
commit 3fe23aee8ddf60ad3d1da1c8ab0f6bb68de84ed7
version (container hash) e249a557d77029851752216cc2456f89
build date 2019-01-24T13:54:59.083Z
size (MB) 3857
size (bytes) 1707327519
SIF Download URL (please use pull with shub://)
Datalad URL View on Datalad
Singularity Recipe Singularity Recipe on Datalad
We cannot guarantee that all containers will still exist on GitHub.